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Abstract—The analysis of fundus images may reflect systemic
and cerebral vascular status through a non-invasive, rapid, and
cost-effective method. Accurate characterization of the retinal
vessels is critical for this status assessment. Medical profes-
sionals can perform diagnosis on measurements extracted from
the retinal vessels, which are identified through segmentation.
Supervised-Learning is used to perform this segmentation task
and has been shown to produce higher-quality results compared
to traditional methods. However, the Supervised-Learning-based
binary method leads to segmentations with multiple Connected
Components (CC). Amongst these components, some are dis-
connected retinal vessels (mentioned as branches), others are
artifacts. Artifacts are disconnected miss-classified components
resulting from the Supervised-Learning segmentation and that
should be removed. Conversely, branches should be kept and
further re-connected as they are anatomically supposed to be con-
nected. In this study, we propose a Connected-Components-based
post-processing procedure to remove artifacts while preserving
the most possible amount of branches. Our methodology involves
a relative threshold to cluster the CC based on their areas. We
also introduce a useful evaluation metric for the segmentations in
the case of measurements extractions on retinal vessels. Over 615
predicted segmentations from six datasets, we improved the dice
by a substantial 0.062 leading from 0.782 to 0.844. In conclusion,
our method has the potential to significantly enhance the usability
and reliability of retinal vessels segmentations, making it a
valuable tool for medical professionals in the assessment of
systemic and cerebral vascular status. Our work also provides
useful insights for future research in this area, especially to
address the re-connection of the remaining branches.

Index Terms—Retinal Vessels, Deep-Learning Segmentation,
Post-processing, Evaluation Metric, Connected Components

I. INTRODUCTION

The analysis of fundus images may reflect an individual’s
systemic and cerebral vascular status through a non-invasive,
rapid, and cost-effective method. The critical aspect of this
status assessment is to accurately characterize the retinal ves-
sels structures in the fundus images. A diagnosis is performed
by medical professionals using measurements extracted from
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the retinal vessels. To extract measurements from the fun-
dus images, the retinal vessels have to be identified. Deep-
Learning techniques can achieve this task of dividing an image
into parts named segmentation, where a label is assigned to
each part based on its visual characteristics. Presently, the
fundus images are segmented in two parts, retinal vessels
in white, background in black. A segmented image resulting
of a Deep-Learning segmentation is called a prediction or
a predicted segmentation. Supervised-Learning is a subset
of Deep-Learning. It consists of training the Deep-Learning
networks with labeled data. Each input data point is associated
with a corresponding output label. The goal of Supervised-
Learning is to enable the network to make accurate predictions
on new unseen data based on the patterns it has learned
from the labeled training data. In the case of retinal vessels
segmentation, it has been shown to produce higher-quality
results [1], [2] compared to traditional methods, i.e. improved
levels of details and robustness to contrast variations. Retinal
vessels are anatomically supposed to be connected, describing
a tree-like structure whose root is the optic disk. How-
ever, despite its benefits, the presented Supervised-Learning-
based binary method leads to segmentations with multiple
Connected Components (CC). Thus, the retinal vessels in
the predicted segmentations are not connected as a tree-like
structure. The predicted segmentations are composed of a
bigger retinal vessels structure, and other smaller components
that we mention as disconnected components. Amongst these
disconnected components, some are disconnected retinal ves-
sels that we mention as branches (of the supposed tree-like
structure), others are artifacts. Artifacts are disconnected miss-
classified components resulting from the Supervised-Learning
segmentation errors. They are classified as retinal vessels in
white, but should be classified as background in black. From
those disconnected components, the branches should be kept
whereas the artifacts should be removed. Retinal Vessels Post-
processing techniques for artifacts removal in segmentations
aim at addressing this goal. Post-processing techniques are
algorithms applied to the output of predicted segmentations.



Algorithms are either traditional methods or Deep-Learning
networks. This latter case can be defined as a Network Fol-
lowed Network (NFN) architecture. The network that outputs
the predicted segmentation is followed by another network that
applies post-processing on it. As we need a tree-like structure
to extract measurements from the retinal vessels predicted
segmentations, without post-processing we can only use the
image part previously referred as bigger retinal vessels struc-
ture. Segmentations containing only the biggest retinal vessels
structure (now mentioned as CC = 1) have less information
than the corresponding originally predicted segmentation (now
mentioned as pred). Performing measurements on CC =1 is
necessary as it can’t be done on pred, but induces information
loss. A way to perform measurements on pred is to remove
artifacts and re-connect the remaining disconnected compo-
nents, i.e. branches. In this study, we present our Connected-
Components-based Post-processing procedure to tackle this
problem. It aims at removing all the artifacts in pred while
preserving the most possible amount of disconnected branches.
This is a preliminary but essential work to further address
the re-connection of the remaining disconnected branches.
Our Connected-Components-based Post-processing methodol-
ogy involves a relative threshold to cluster the CC based on
their number of pixels (now mentioned as CC’s areas). It takes
pred as input, and outputs the segmentation where artifacts
are removed and most branches are preserved. In this study,
we also introduced a metric that gives the number of CC in
segmentations. It highlights either a connected tree-structure
segmentation or the need to re-connect remaining disconnected
branches. It thus provides a more accurate quality assessment
of segmentations that will be measured for diagnosis. The
sections of this paper are structured as follows: In section II, a
literature review of related work. In section III, an explanation
of our post-processing method and our evaluation metric. In
section IV, the results of the proposed post-processing method
performed on six retinal vessels binary segmentation datasets.
In section V, the conclusion of our paper and potential
directions for future research.

II. RELATED WORK

A. Retinal Vessels Supervised-Learning Segmentation

The analysis of fundus images may reflect an individual’s
systemic and cerebral vascular status through a non-invasive,
rapid, and cost-effective method. Accurately characterizing
the retinal vessels structures in fundus images is crucial for
systemic and cerebral vascular status assessment, as medical
professionals use measurements extracted from these vessels
to diagnose patients. In order to extract measurements, the
vessels must first be identified, which can be achieved using
Deep-Learning segmentation, a subset of computer vision and
machine learning techniques for dividing an image into parts.
Each part of the image is assigned a label (Fig. 1), retinal ves-
sels in white, background in black. A two-part segmentation
is called a binary segmentation. A segmented image resulting
of a Deep-Learning segmentation task is called a prediction

or a predicted segmentation. Supervised-Learning is a Deep-
Learning technique that involves training the networks with
labeled data, where each input data point is matched with an
output label. The objective of Supervised-Learning is to enable
the network to make accurate predictions on previously unseen
data by learning patterns from the labeled training data. In
the case of retinal vessels segmentation, it has been shown to
produce higher-quality results [1], [2] compared to traditional
methods, i.e. improved levels of details and robustness to
contrast variations. The most efficient architectures in this field
yield from U-Net [3], itself built upon Convolutional Neural
Networks (CNN). U-Net architecture is commonly named an
encoder-decoder. The network consists of a contracting path
(downsampling) to capture high-level to low-level features
from the input, and a symmetric expanding path (upsampling)
that enables precise localization of the features to recon-
struct the output segmentation map. U-Net also incorporates
skip connections between the down and up sampling paths
to combine features from multiple scales. Since then, new
architectures for retinal vessels segmentation came up with
modifications, whether on encoder as PCAT-UNet [6] with
the PCAT blocks; on decoder as DR-VNet [7] with Squeeze,
Excitation and Dense-net blocks; on bottleneck as SA-unet [8]
with Spatial Attention module; or skip connections as r2u-
net [9] with residual connections.

Fig. 1. Fundus image (left), Retinal vessels segmentation (right) [10]

B. Retinal Vessels Post-processing for artifacts removal

Retinal vessels are supposed to have a tree-like structure
whose root is the optic disk, but Supervised-Learning-based
binary method leads to segmentations with multiple Connected
Components (CC). Presently, each predicted segmentation is
composed of a bigger retinal vessels structure and other
smaller components that we mention as disconnected com-
ponents. Amongst these disconnected components, some are
disconnected retinal vessels that we mention as branches (of
the supposed tree-like structure), others are artifacts. Artifacts
are disconnected miss-classified components resulting from
the Supervised-Learning segmentation. They are classified as
retinal vessels in white, but should be classified as background
in black. From those disconnected components, the branches
should be kept and the artifacts removed. Retinal Vessels Post-
processing techniques for artifacts removal in segmentations



aim at addressing this goal either with traditional methods
or Deep-Learning networks. This latter case can be defined
as a Network-Followed-Network (NFN) architecture. The net-
work that outputs the predicted segmentation is followed by
another network that applies post-processing on it. In the
field of retinal vessels post-processing, few techniques have
been presented due to a predominant community research
emphasis on network architectures for segmentation. Most of
the time, these post-processing techniques are presented as
a briefly outlined component towards the end of a network
architecture article. Existing post-processing techniques ap-
plied to retinal vessels segmentations can be categorized as
follows: i) Morphological operations, such as dilation, erosion
(opening, closing) [11], and skeleton [12] (combined with
convex hull) [13]; ii) Thresholds, such as absolute threshold
on connected components’ areas [14], or absolute threshold
on connected components’ elongatedness [15], or feature maps
Otsu treshold [16], or edge-based Hysteresis threshold [17]; iii)
Deep-Learning Network-Followed-Network, with Conditional
Random Fields [18], or with encoder-decoder [19].

C. Retinal Vessels Evaluation Metrics

Evaluation metrics are quantitative measures used to assess
the performances of a statistical model for a specific task.
The evaluation metrics typically include four basic numbers
that define the confusion matrix (CM): True Positive (TP),
False Positive (FP), True Negative (TN), and False Negative
(FN). The CM is obtained by a pixel comparison between
a predicted segmentation and its associated groundtruth. For
retinal vessels, groundtruth is a manually annotated segmenta-
tion performed by a medical specialist. In the CM, Positive
refer to retinal vessels pixels in white and negative refer
to background pixels in black. True refers to well-classified
pixels and False refers to miss-classified pixels. Thus, TP
is the number of well-classified white pixels. Based on the
CM, several evaluation metrics can be used to summarize
the overall performances of a model, such as: Precision (P),
Recall (R), Fl-score and Dice Similarity Coefficient (D) (N.B.
F1-score and Dice Similarity Coefficient are numerically equal
in the binary case). Each of these metrics, Table I, have in
common that they don’t use the TN values as part of the
quality evaluation. This particularity leads to a more robust
evaluation of the segmentations qualities in our case of class
imbalance where the retinal vessels represent only 10% of
the groundtruth segmentation pixels. Furthermore, F1-score
and Dice Similarity Coefficient are particularly interesting as
they balanced Precision and Recall. Other evaluation metrics
for assessing retinal vessels segmentation performances are
also used such as: Accuracy, Balanced Accuracy, Specificity
and Area Under the receiver operating characteristic Curve
(AUC). These metrics, conversely to Precision, Recall and
Dice Similarity Coefficient, compute TN as part of their
evaluation which we consider an error (e.g. segmentation
performed on a highly padded image will result in better
performances as the added padding is always well-classified
as a TN value). Our results won’t mention these latter metrics.

TABLE I
PRECISION, RECALL & DICE FORMULAS
[ Precision [ Recall [ Dice |
p_ TP o TP ~ % TP
TP+ FP TP+ FN ~ 2+xTP+FP+FN

III. METHODOLOGY
A. Retinal Vessels Datasets

In order to assess our method’s generalizability, we eval-
uated performances on six public datasets, which collectively
comprise 205 image pairs. Each pair contain an RGB fundus
image and its binary manual annotation of retinal vessels.
Fig. 2 shows fundus images of the datasets, from top to bottom
and from left to right: CHASEDBI [20], DRHAGIS [21],
DRIVE [22], HRF [23], IOSTAR [24] and LESAV [25]. These
fundus images have been captured using different materials
(e.g. Nidek NM-200-D, Topcon TRC-NW6s, Canon CRS non-
mydriatic with 3CCD sensor, ...), from different angles (e.g.
optic disk centered, macula centered), with different resolu-
tions (e.g. 999*%960, 4752*%3168, 565*584, ...), and comprise
various pathological signs (e.g. glaucoma, drusen, exudate, ...).

Fig. 2. CHASEDBI1, DRHAGIS, DRIVE, HRF, IOSTAR, LESAV

B. Data Preparation

Post-processing techniques are algorithms applied to the
output of predicted segmentations. We first need to obtain
these predicted segmentations. We perform an independent
Supervised-Learning network training for each of the six
datasets. As shown in Fig. 3, input training data are the RGB
fundus and binary groundtruth resized to 1024*1024 pixels.
To reflect the state of the art [1], [2], our training architecture
takes U-Net [3] as a baseline, where we incorporated mod-
ifications on encoder and decoder parts: i) Convolutions in
the encoder are performed with padding; ii) Batch normaliza-
tion [4] is applied before ReLU activation; iii) We minimize
a Dice Loss [5] instead of a Cross Entropy Loss, as we are
dealing with imbalanced classes (10% of white pixels for 90%
of black pixels). Output data are the predicted segmentations
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Fig. 3. Data processing pipeline illustration from training inputs to post-processing outputs: (a) Training fundus and associated retinal vessels groundtruth
pairs, (b) Neural Network, (c) Generated weights and biases, (d) Fundus to segment, () Retinal vessels predicted segmentations, (f) Post-processing procedure,

(g) Retinal vessels post-processed segmentations

of size 1024*1024 pixels. We will not compare to others Deep-
Learning segmentation methods. As mentioned earlier, we do
not want to highlight our predicted segmentations results, but
we want to highlight our post-processing method results ap-
plied on these predicted segmentations. As mentioned earlier,
predicted segmentations are characterized by a bigger retinal
vessels structure and other smaller components. A repeated
training procedure with the exact same parameters leads to
variations in results. The bigger retinal vessels structure is
mainly still but the smaller components positioning is more
different. We thus repeated three times each training on the six
datasets to obtain a variability in the predictions. This leads
to eighteen sets of predicted segmentations (615 images) for
which inference takes in mean 0.5s per image. Each of the
eighteen sets of predictions has a mean Dice over 0.80 and up
to 0.88 which match or improve state of the art performances.
It thus ensures that: i) the artifacts removal procedure will
be able to improve current and future high quality predicted
segmentations; ii) the predicted segmentations reflect most of
the spatial information of a tree-like structure.

C. Artifacts removal procedure

To extract measurements from predicted retinal vessels
segmentations, a tree-like structure is required. Without post-
processing, we can only use the image part previously referred
as bigger retinal vessels structure. However, such segmenta-
tion (denoted as C'C' = 1) provides less information than the
originally predicted segmentations (denoted as pred). Mea-
surements must be taken from C'C' = 1 due to the impossibility
of doing so on pred, but this induces information loss. To
overcome this limitation, artifacts must be eliminated, and
branches must be reconnected. In this section, we present our
Connected-Components-based Post-processing procedure to
tackle this problem. Our Connected-Components-based Post-
processing is related to the threshold post-processing family
mentioned in section II-B. It involves a relative threshold to
cluster the CC based on their number of pixels (now mentioned

as CC’s areas). It takes pred as input, and outputs the seg-
mentation where artifacts are removed and most branches are
preserved. It aims at removing all the artifacts in pred while
preserving the most possible amount of disconnected branches.
This is a preliminary but essential work to further address the
re-connection of the remaining disconnected branches. The
procedure can be defined in four steps. First, on the Deep-
Learning predicted segmentations we find and store every
CC’s areas in an 8-connected pixel neighborhood by perform-
ing a Connected-Component-Labeling (CCL) algorithm [26].
Second, we sort the CC’s areas by decreasing order. Third,
we define an area-related threshold of "X times the biggest
CC’s area”. Fourth, we erase each CC whose areas are
under the threshold. Performances of this technique rely on
threshold definition, which can be chosen through the CC’s
areas distribution understanding. This CC’s areas distribution
sorted by decreasing order can be seen in three parts (even
if there is no distinct threshold value that can cluster CC’s
areas in three distinct parts). These three parts are: i) High
areas, exclusively disconnected branches; ii) Low areas, over-
whelmingly artifacts and few very small parts of disconnected
branches; iii) Between high and low areas, no real possibility
to determine whether it’s artifacts or disconnected branches.
Understanding that, threshold settings can lead to three differ-
ent behaviours: i) High areas threshold, to erase all artifacts
and exclusively keep disconnected branches (but not all); ii)
Low areas threshold, to keep all disconnected branches but
also some artifacts (but not all); iii) Between high and low
areas threshold, to perform an operation with an undetermined
and thus not valuable behaviour. As mentioned earlier, the
procedure aims at removing all the artifacts in pred while
preserving the most possible amount of disconnected branches.
This is a preliminary but essential work to further address the
re-connection of the remaining disconnected branches. This
goal can be fulfilled using our Connected-Components-based
Post-processing procedure and setting a threshold in the high
CC’s areas. Results are discussed in section IV.



D. Evaluation Metric

In this section, we introduced a metric to provide a
more accurate assessment of retinal vessels segmentations. The
metric will give the number of CC in segmentations. If CC=1,
the retinal vessels in the segmentations can be measured. Else,
there are still post-processing procedures to perform. First,
our Connected-Components-based Post-processing procedure
to remove artifacts. Second, a branches re-connection proce-
dure. The metric highlights either a connected tree-structure
segmentation or the need to re-connect remaining disconnected
branches. It thus provides a more accurate quality assessment
of retinal vessels segmentations for measurements extractions.

IV. RESULTS

As mentioned in section III-C, retinal vessels in predicted
segmentations (now mentioned as pred) have to be connected
to extract measurements. Else, without post-processing we can
only use the image part containing only the biggest retinal
vessels structure (now mentioned as CC = 1). This latter
has less information than pred. Performing measurements
on CC = 1 is necessary as it can’t be done on pred, but
induces information loss. A way to perform measurements
on pred is to remove artifacts and re-connect the remaining
disconnected components, i.e. branches. In this section, we
present the performances of our Connected-Components-based
Post-processing procedure that tackles the artifact removal
problem. It aims at removing all the artifacts in pred while
preserving the most possible amount of disconnected branches.
As mentioned in section III-A six datasets were used to gen-
erate predicted segmentations. As mentioned in section III-B
we trained each network thrice leading to three different
sets of predicted segmentations. Results will thus be assessed
on eighteen different sets of predicted segmentations for a
total of 615 images. Mean performances of the three sets
of predictions for each dataset are shown in Table II. In
each row, we compared pred, CC = 1 and BestDice.
This latter illustrates the procedure applied on known data.
In our experimentations, for every predicted segmentation of
every dataset, we compared pred to its groundtruth, then we
recursively removed its smallest CC and compared it again
until it is equal to CC' = 1 in order to explore the Dice
values of every case. From there, we know the best Dice
value for each set of predictions. We also know the other
associated metrics values as performances are assessed using
TP, KTP(%), Dice, CC & THLD. THLD refers to the CC’s
area-related threshold mentioned in section III-C. KTP(%)
defines the amount of Kept True Positives. It highlights the
amount of branches kept by the procedure. The difference of
TP between pred and C'C = 1 corresponds to the maximum
number of re-connectable pixels. The more TP remain at the
end of the procedure, the more branches are kept. The kept TP
are the sum of the TP in the kept CC. The number of kept CC
is selected using the maximum Dice through the exploration
the Dice values we mentioned earlier. Table II first row can
thus be read as: ”In average for the dataset CHASEBDI, the
procedure kept 96% of pred’s TP. It increased the Dice score

of both CC' = 1 and pred. It is done by keeping 20 CC
out of 48. It corresponds to keep the CC whose areas are
over 0.00094*74541 (70 pixels). This avoid only increasing TP
while both losing precision, i.e. keeping artifacts, and losing
recall, i.e. removing re-connectable branches. Precision alone
is not sufficient to assess our performances. Branches are also
composed of FP as their diameters are not exactly the same
as their groundtruth. As smaller disconnected components
have proportionally much more FP than bigger one, precision
is necessarily decreasing when the number of kept CC is
increasing. Additionally to the mean performances per dataset
in Table II, we summed up the results in Table III. We also
provided the mean number of removed artifacts, the gain of
Dice generated by the procedure and the maximum obtained
THLD. These results are discussed in section IV-A.

TABLE I
MEAN PERFORMANCES ON EACH DATASET

[ Datasets | [ TP [ KTP(%)* | Dice | CC [ THLDP
pred 79210 100 0872 | 48 0

CHASEDBI | BestDice® | 79079 96 0.873 | 20 | 0.00094
CC =1 | 74541 0 0.851 | 1 1
pred 39516 100 0809 | 72 0

DRHAGIS | BestDice | 39367 93 0.812 | 20 | 0.0103
CcC=1 | 37047 0 0787 | 1 1
pred 82389 100 0.835 | 87 0

DRIVE BestDice | 82234 94 0.836 | 31 | 0.00067
CC =1 | 79078 0 0.822 | 1 1
pred 75101 100 0839 | 97 0

HRF BestDice | 75026 97 0.84 | 68 | 0.00034
CC =1 | 71599 0 0.821 | 1 1
pred 73297 100 0857 | 56 0

IOSTAR BestDice | 73147 99 086 | 12 | 0.0077
CC =1 | 34871 0 0553 | 1 1
pred 69925 100 0884 [ 25 0

LESAV BestDice | 69854 98 0.885 | 13 | 0.00164
CC=1 | 65229 0 0.858 | 1 1

2 Amount of Kept TP
b CC’s area-related threshold
¢ Procedure applied on known data

A. Discussion

Before analyzing the mean statistics of the eighteen pre-
dictions, we will discuss the specificities of the six datasets
that lead to these performances. As mentioned in section III-A
these datasets images have been captured using different mate-
rials, from different angles, with different (original) resolutions
and comprise various pathological signs. Their groundtruth
annotations also transcript this variety. TP and CC distributions
are thus different between datasets. In particular, as shown in
Table II, the number of TP in DRHAGIS is only half of that
in the other datasets. Also, the CC = 1 Dice of IOSTAR
is way below the others Dice in the others CC' = 1 rows
as the dataset did not have annotations in the optic disk
zone, leading to groundtruth retinal vessels disconnected in
two main parts. We can consider three levels that lead to
more or less predicted CC (as the predicted details are more



likely to be disconnected). HRF is considered highly detailed
and shows a mean of 97 CC in its predictions. Conversely,
LESAV does not present much retinal vessels in fundus images
nor in groundtruth segmentations, thus shows a mean of 25
CC in its predictions. CHASEDBI, DRHAGIS, DRIVE and
IOSTAR belong to the intermediate category. Mean statistics
of the procedure experiments on the eighteen sets of predicted
segmentations are showed in Table III. Using the procedure
over 615 predicted segmentations from six datasets, we are
able to remove 57% of the CC (37/64) while keeping 96%
of the TP. The procedure improved the CC = 1 mean dice
by a substantial 0.069 leading from 0.782 to 0.851 (also
being higher than the original pred with no removal). We
performed the procedure on known data to demonstrate its
performances, but we also willed to find the best threshold
value to perform the procedure on unknown data. Considering
the strong distribution differences between the datasets, the
average THLD value in Table III is not relevant to perform
the procedure on unknown data. As the most important idea of
the procedure is to remove all the artifacts before keeping the
most possible amount of branches, we suggest setting a high
THLD value. To illustrate our artifacts removal procedure on
new unknown data, we provided in Table IV the results using a
THLD of 0.0103. This is the maximum THLD value amongst
the BestDice. It simulates a sub-optimal but safe threshold.

TABLE III
MEAN STATISTICS OF THE EIGHTEEN PREDICTIONS

[ [ TP [ KTP(%)* [ Dice | CC [ THLDP
pred 69906 100 0.849 | 64 0

BestDice® | 69784 96 0.851 | 27 | 0.00359
cCc=1 60394 0 0.782 1 1
Removed CC - 37 -
Dice gain over CC' =1 0.069 - -

Maximum THLD - - 0.0103

2 Amount of Kept TP
b CC’s area-related threshold
¢ Procedure applied on known data

Results in Table IV show the procedure execution using a
THLD of 0.0103, i.e. the maximum THLD value amongst the
best predictions, simulating a sub-optimal but safe threshold.
Over 615 predicted segmentations from six datasets, we are
removing 95% of the CC (61/64) while keeping 56% of
the TP. The procedure improved the CC = 1 mean dice
by a substantial 0.062 leading from 0.782 to 0.844. Also,
the procedure is fast as it takes only 0.06s per image. You
may have noticed that calculating the mean KTP based on
the mean TP in Table IV leads to different results (96% —
98% & 56% — 82%). We have chosen to take the mean of
each KTP computed for each dataset to give fairer results.
This demonstration of our artifacts removal procedure on
unknown data lead to good results considering we still are
able to keep 56% of the TP, but obviously lower results
compared to that using known data. These differences show the
strong importance of the knowledge of the data distribution.

To enhance the results on new unknown data, we encourage
annotating a small number of images to get a knowledge of
the data distribution, to set THLD in a more favorable way.

TABLE IV
PROCEDURE SIMULATION ON NEW UNKNOWN DATA

[ TP [ KTP(%)* | Dice | CC [ THLDP |
pred 69906 100 0.849 | 64 0
BestDice® 69784 96 0.851 | 27 | 0.00359
THLDP >=0.0103 | 68245 56 0.844 | 3 | 0.38938
cC =1 60394 0 0782 | 1 1

2 Amount of Kept TP
b CC’s area-related threshold
¢ Procedure applied on known data

V. CONCLUSION

In this study, we propose a Connected-Components-based
post-processing procedure to remove artifacts while preserving
the most possible amount of disconnected branches. Our
methodology involves a relative threshold to cluster CC based
on their areas. We also introduce a useful evaluation metric for
the segmentations in the case of measurements extractions on
retinal vessels. We performed the procedure over 615 predicted
segmentations from six datasets. The procedure removed on
average 57% of the CC (37/64) and kept 96% of the TP. The
procedure improved the CC' = 1 mean dice by a substantial
0.069 leading from 0.782 to 0.851 (also being higher than
the original predictions mean dice with no removal). We
demonstrated the procedure efficiency on unknown data by
ignoring our data distribution knowledge to set a threshold
value. It led to good results considering that we were able to
keep 56% of the TP and to improve the C'C' = 1 mean dice by
a substantial 0.062 leading from 0.782 to 0.844. The results
on unknown data are lower compared to that using known
data but we have to keep in mind that we set a very high
threshold value i.e. the maximum threshold value amongst the
best predictions: 0.0103. This threshold has removed 95% of
the CC (61/64). These differences show the strong importance
of the knowledge of the data distribution. To enhance the
results on new unknown data, we encourage annotating a small
number of images to get a knowledge of the data distribution,
thus being able to set a threshold in a more favorable way.
Finally, the procedure takes the predicted segmentations as
input and produces outputs where artifacts are removed and
most disconnected branches are preserved. Our new evaluation
metric provides a more accurate assessment of retinal vessels
segmentations for measurements by highlighting their number
of CC and thus showing information on remaining artifacts or
disconnected branches that the dice score alone can’t reflect. In
conclusion, our method can significantly enhance the usability
and reliability of retinal vessels segmentations, making it a
valuable tool for medical professionals in the assessment of
systemic and cerebral vascular status. Our work also provides
valuable insights for future research in this area, especially to
address the re-connection of the remaining branches.
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